

ANNÉE UNIVERSITAIRE 2018-2019

1^{re} session 1^{er} semestre

Licence Économie-Gestion – 1^{re} année

Matière: Mathématiques appliquées – Éléments de correction

Enseignant: Vincent Jalby

Exercice I (30 min, 5 points)

On considère la fonction $f(x) = \frac{x^2 + 1}{x}$.

1) La fonction f(x) est définie si et seulement si $x \neq 0$. D'où $D_f = \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$.

2) On a $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$

3) On a

$$f(x) = \frac{x^2 + 1}{x} = x + \frac{1}{x} \implies f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} \implies f''(x) = \frac{2}{x^3}$$

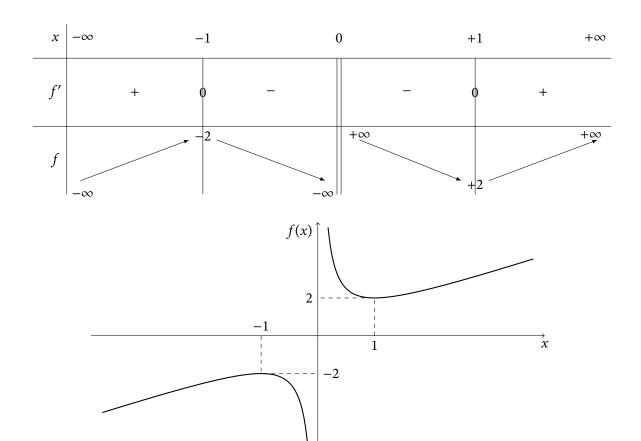
4) Pour déterminer le(s) extremum(s) de f(x), on utilise la CNO puis les CSO :

$$f'(x) = \frac{x^2 - 1}{x^2} = 0 \iff x^2 = 1 \iff x = -1 \text{ ou } x = +1$$

$$\begin{cases} f''(-1) = -2 < 0 & \text{maximum local} \\ f''(-1) = +2 > 0 & \text{minimum local} \end{cases}$$

La fonction f admet donc un maximum local en x = -1 et un minimum local en x = +1.

5)



Durée: 2 heures

6) On voit que les extrémums trouvés ne sont que locaux. Toutefois, sur l'intervalle $]-\infty$, 0[, la fonction admet un maximum global en x = -1 et sur $]0, +\infty[$, la fonction admet un minimum global en x = +1.

Exercice II (30 min, 5 points)

On considère la fonction de deux variables $f(x, y) = x^2 - xy + \frac{1}{6}y^3 + 6$.

1) On a

$$f'_x(x,y) = 2x - y$$
 $f'_y(x,y) = -x + \frac{1}{2}y^2$ $f''_{x^2}(x,y) = 2$ $f''_{xy}(x,y) = -1$ $f''_{yx}(x,y) = -1$ $f''_{y^2}(x,y) = -1$

2) La matrice hessienne de f et son hessien sont

$$H_f(x, y) = \begin{pmatrix} 2 & -1 \\ -1 & y \end{pmatrix}$$
 $\det H_f(x, y) = 2y - 1$

- **3)** On se propose de résoudre le problème d'optimisation de f(x, y):
 - a) Les conditions nécessaires sont :

$$\begin{cases} f_x'(x,y) = 0 \\ f_y'(x,y) = 0 \end{cases} \iff \begin{cases} 2x - y = 0 \\ -x + \frac{1}{2}y^2 = 0 \end{cases} \iff \begin{cases} y = 2x \\ -x + 2x^2 = 0 \end{cases} \iff \begin{cases} x(2x - 1) = 0 \\ y = 2x \end{cases} \iff \begin{cases} x = 0 \text{ ou } x = \frac{1}{2} \\ y = 0 \text{ ou } y = 1 \end{cases}$$

La fonction f admet donc deux points critiques : (0,0) et (1/2,1).

b) En (0,0), det $H_f(0,0) = -1 < 0$. Il s'agit donc d'un point col. Pas d'extremum en (0,0). En (1/2,1), det $H_f(1/2,1) = 1 > 0$ et $f''_{x^2}(1/2,1) = 2 > 0$. La fonction f admet donc un minimum local au point (1/2,1).

Exercice III (45 min, 7 points)

Pour $K \in \mathbb{R}$, on considère le problème d'optimisation suivant

(P)
$$\begin{cases} \text{Optimiser } f(x, y) = x^2 + y^2 \\ \text{sous la contrainte } y - 2x = K \end{cases}$$

1) Méthode de Lagrange

- **a)** La fonction f(x, y) est une fonction convexe sur \mathbb{R}^2 comme somme des deux fonctions convexes d'une variable : $x \mapsto x^2$ et $y \mapsto y^2$.
 - **b)** Le lagrangien associé à (P) est $L(x, y, \lambda) = x^2 + y^2 + \lambda(y 2x K)$. Les CNO sont alors

$$\begin{cases} L_x'(x,y,\lambda) = 0 \\ L_y'(x,y,\lambda) = 0 \\ L_\lambda'(x,y,\lambda) = 0 \end{cases} \iff \begin{cases} 2x - 2\lambda = 0 \\ 2y + \lambda = 0 \\ y - 2x - K = 0 \end{cases} \iff \begin{cases} x = \lambda \\ y = -\frac{\lambda}{2} \\ -\frac{\lambda}{2} - 2\lambda = K \end{cases} \iff \begin{cases} x = -\frac{2}{5}K \\ y = \frac{1}{5}K \\ \lambda = -\frac{2}{5}K \end{cases}$$

Le problème (*P*) possède donc un unique point candidat $(x_0, y_0) = (-\frac{2}{5}K, \frac{1}{5}K)$. Comme la fonction f est convexe et la fonction contrainte y - 2x - K est affine, le problème (*P*) admet un minimum global en (x_0, y_0) .

2) Méthode de substitution

a) Sous la contrainte y - 2x = K, on a y = 2x + K, d'où

$$f(x, y) = f(x, 2x + K) = x^2 + (2x + K)^2 = 5x^2 + 4Kx + K^2 = h(x)$$

Résoudre (P) revient alors à optimiser h(x).

- **b)** On a h'(x) = 10x + 4K et h''(x) = 10. La CNO h'(x) = 0 donne x = -4K/10 = -2K/5. Comme la fonction h est convexe $(h''(x) = 10 \ge 0, \forall x)$, elle admet donc un minimum global en $x_0 = -2K/5$. Il en est donc de même du problème (P) avec $y_0 = 2x_0 + K = K/5$.
- **3)** Lorsque K = 5, le problème (P) possède un minimum global en $(x_0, y_0) = (-2, 1)$. Ce minimum est f(-2, 1) = 5.